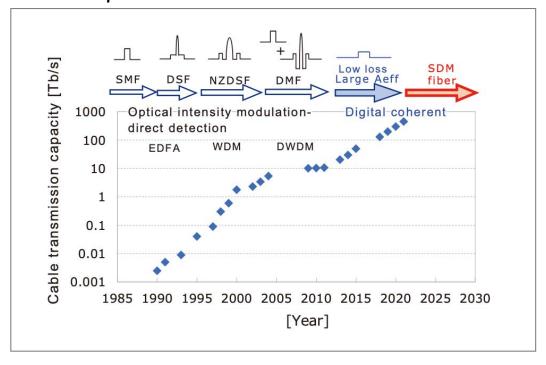


Spatial Division Multiplexing A New (Subsea) Cable Paradigm

Mark Tinka
Managing Director, TransmissionCo

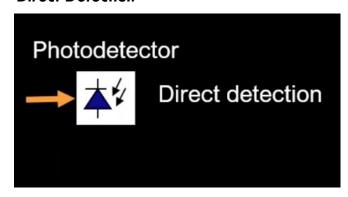
History



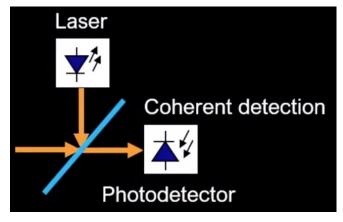
- Subsea cables have been in operation since 1866.
- Fibre optic subsea cables began carrying traffic in 1956 (TAT-1).
- Subsea cables are carrying 1.5Pbps annually, as of 2024 (\sim 99% of all trans-continental traffic).

Evolution

Evolution Snapshot



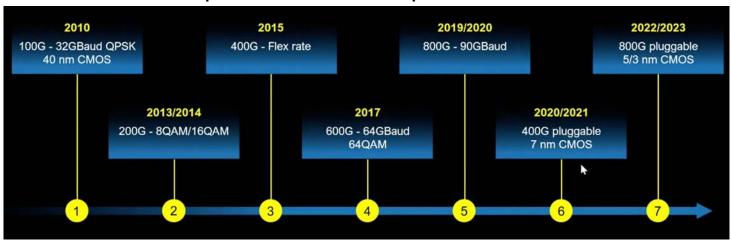
- Initial transmission technologies were based on single wavelengths.
- The next phase was Wavelength Division Multiplexing (WDM).
- Then came coherent detection.
- The future is Spatial Division Multiplexing (SDM).

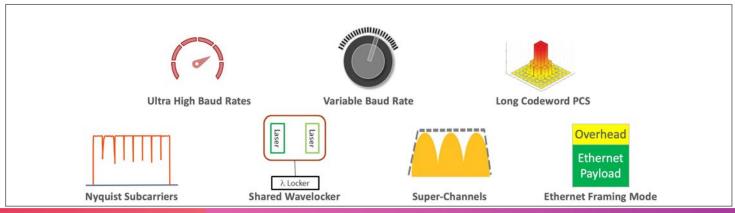

Optical Technology

Direct Detection

- Direct Detection was the predominant technology, until 2010.
- Uses only amplitude (intensity of light) to transmit data.
- 1 for bright light. 0 for dim light.
- Maximum capacity is 10G.
- Prone to linear impairments, primarily chromatic dispersion.

Coherent Detection



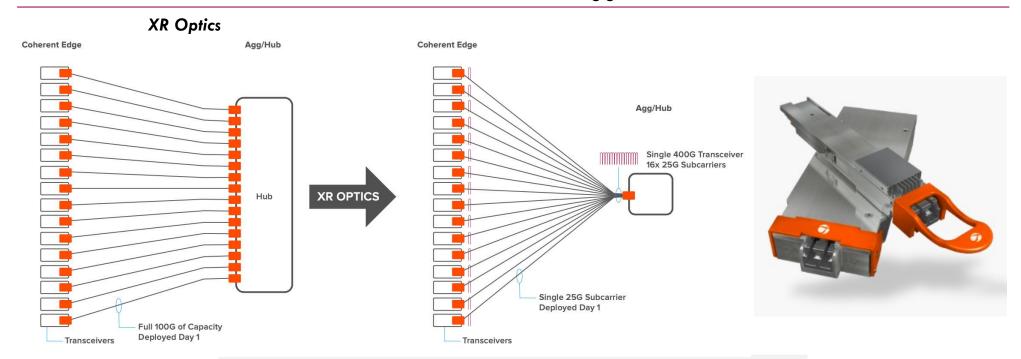

- Coherent Detection came on the scene in 2008, commercialized 2012.
- Uses amplitude, phase and polarization to transmit data.
- Allows for up to 1.6T per wavelength (as of 2024).
- Permits great distances at lowest power consumption possible.
- Inherently compensates for linear impairments via the DSP.

Coherent Evolution

Coherent Detection Development Milestones & Roadmap

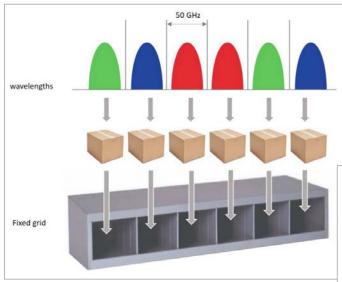
- 400G-ZR/ZR+ QSFP-DD and OSFP form factors.
- 100G 400G application modes (QPSK, 8QAM and 16QAM).
- OdB low power, +1dB high power version & >+1dB higher-power version.
- C-band tunable.
- Encryption support (AES256).
- CMIS 5.0 support.
- PCS support (>+1dB version).
- MSA/OpenROADM/OpenZR/OIF compliant.
- <24W.

- 800G-ZR/ZR+ QSFP-DD and OSFP form factors.
- 100G 800G application modes (QPSK, 8QAM, 16QAM and 64QAM).
- \rightarrow +1dB power.
- C-band tunable.
- CMIS 5.2 support.
- PCS support (ZR+ version).
- MSA/OpenROADM/OpenZR/OIF compliant.
- <30W.

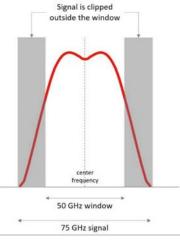


100G Coherent ZR Optics

- 100G coherent ZR+ pluggable.
- Developed by Adva, Coherent and Acacia.
- 120km unamplified, 900km amplified.
- C-band tunable.
- QSFP28 interface.
- <5W.
- MSA/OpenROADM/OpenZR/OIF compliant.



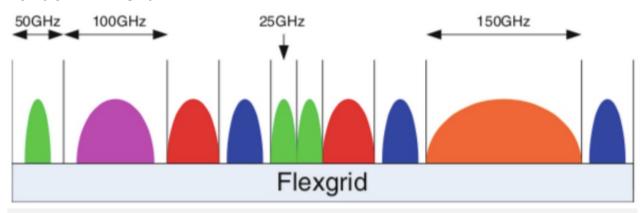
- XR pluggables, largely being developed by Infinera.
- Standardized in the OpenXR Forum.
- Specification for p2p and p2mp optical wavelengths.
- Supports BiDi use-cases (200G capacity).



Fixed Grid DWDM Systems

Fixed DWDM Grid

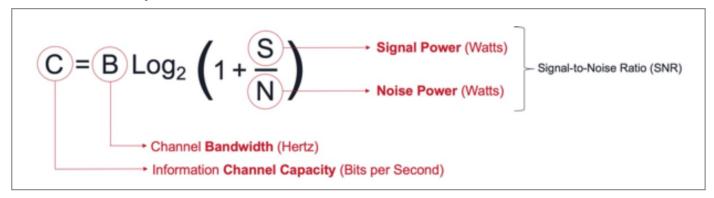
- Most DWDM systems today use a fixed-grid layout.
- Ideal when transponders use the same baud rate per wave.
- Today, transponders can run at various baud rates.
- Increasing baud rate increases bandwidth capacity per wave.
- But higher baud rates require wider grid frequencies.



- The edges of the 75GHz signal are clipped in the 50GHz channel.
- Leads to poor signal and/or transmission errors.

Flexible Grid DWDM Systems

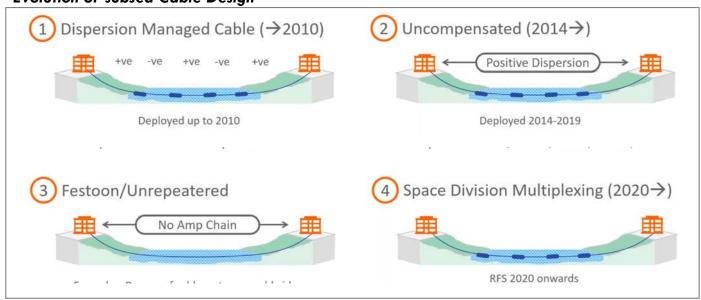
Flexible DWDM Grid



- Flex(ible) grids are the solution to the fixed grid limitations.
- Provides a continuous 4.8THz 6.1THz block of spectrum (C-Band).
- Operators can choose to assign spectral width per wavelength, as needed.
- It is granular, up to 12.5GHz per channel.
- Eliminates stranded capacity as in the case of fixed grid systems.
- More capacity can be carried across the entire system.
- Different services can be delivered without suffering spectral inefficiency.

Shannon's Limit

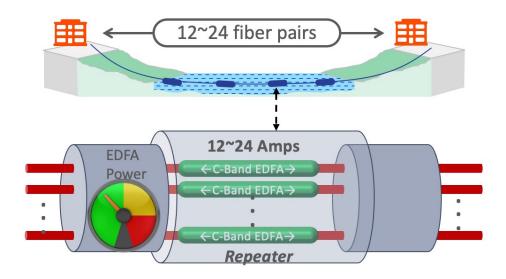
Shannon's Limit Equation



- Once a subsea cable is laid, "B" is fixed based on the number of fibre pairs.
- Current subsea amplifiers are only 4.55THz wide.
- The only thing to improve is the SNR, so that we can increase "C".
- In the last 13 years, we have done this with coherent optical technology.
- But we are nearing Shannon's limit with subsea, primarily due to power constraints.
- Time to go back to basics and build "hardware", so as to grow capacity.

Subsea Cable Technology Evolution

Evolution of subsea Cable Design



- Uncompensated (high-dispersion) fibres are the most preferred.
- LEAF (Large Effective Area Fibre) fibres are used for subsea application = lower PMD = more power.
- New long-haul subsea cables will mostly be SDM-based.
- Especially if content providers are involved in the build.

SDM: Side-Stepping Shannon's Limit

SDM subsea Cables

- We can be as clever as we have been, but at some point, we need to build things.
- SDM looks at adding more fibre pairs, as opposed to improving SNR.
- Rather than increase fibre pair capacity, we increase overall cable capacity.

What Is SDM

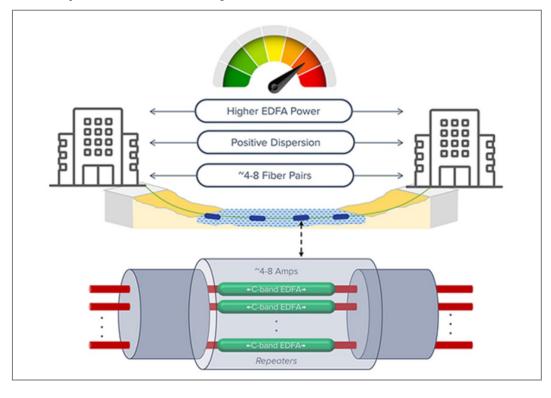
Latest approach to maximizing the capacity of a subsea cable

SDM techniques (examples)

Optimize repeater power and space

- Longer amplifier spacing
- Lower amplifier power
- Pump sharing

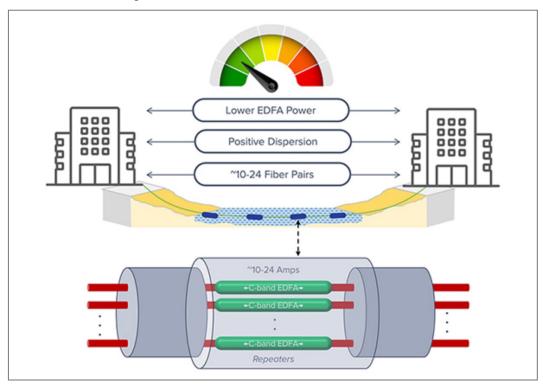
Consequences of SDM


- Lower launch power
- Better OSNR
- Lower non-linear penalties
- Operation in linear regime

Lower fibre pair capacity but <u>more fibre pairs</u> delivering higher <u>total cable</u> capacity

Uncompensated Cables: How We Reach Maximum Capacity

Uncompensated Cable Design



- Uncompensated fibre technology.
- First appeared in 2015.
- 2, 4, 6 or 8 fibre pairs in the cable.
- Maximize spectral efficiency per fibre pair.
- Maximize spectral capacity per fibre pair.
- (not the overall cable).
- High amplifier power.
- 100G 800G channels, today.
- Anywhere from 4T 24T per fibre pair.
- 32T 192T per cable system.

SDM Cable: How We Reach Maximum Capacity

SDM Cable Design

- SDM fibre architecture.
- First appeared in 2020.
- 10, 12, 16, 18, 20 or 24 fibre pairs in the cable.
- Sacrifice spectral efficiency per fibre pair.
- Sacrifice spectral capacity per fibre pair.
- Compensate by increasing fibre pairs in the cable.
- Low amplifier power.
- 100G 800G channels, today.
- Anywhere from 4T 24T per fibre pair.
- 40T 576T per cable system.
- Lots more margin for future capacity.

Generational Evolution of Trans-Atlantic Subsea Cable

Cable Design & Capacity Growth - Direct Detection vs. Coherent Technology

	Dispersion Managed	Uncompensated	SDM	SDM
	Apollo	MAREA	Dunant	Anjana
RFS Date:	2003	2018	2021	Q4'24
Fibre Pairs:	4	8	12	24
FP Capacity:	10Tb/s	26.2Tb/p	25.2Tb/s	21Tb/s
Cable Capacity	40Tb/s	210Tb/s	312Tb/s	504Tb/s

SDM Benefits

- SDM = lower capacity per fibre pair, BUT more capacity per cable.
- Lower wavelength power = better OSNR at receiver.
- Lower power requirements compared to previous cable technologies.
- Lower power = plenty of margin to adapt to new transponder technology.

SDM Cables Built & Planned

SDM Cable Build Projects

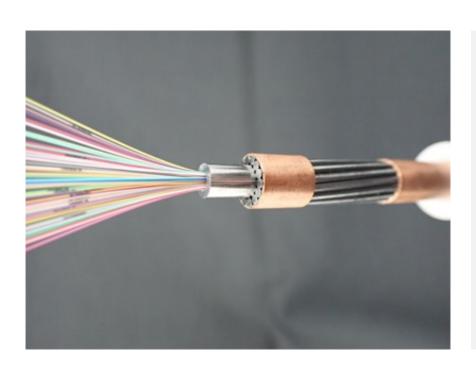
SDM Cable System	Fibre Pairs	RFS
Dunant	12	2021
H2HE	16	2021
Amitié	16	2022
Equiano	12	2022
APRICOT	16	2024
JUNO	20	2024
2Africa	16	2024
Bifrost	12	2024
MEDUSA	24	2024
Hawaiki Nui	12	2025
Caribbean Express	18	2025
SMW-6	10	2025
CSN-1	12 – 17	2025

- For each of these, you are looking at 15T 20T per fibre pair.
- Total system capacity in excess of 400T 500T.

SDM Challenges

It's not all roses...

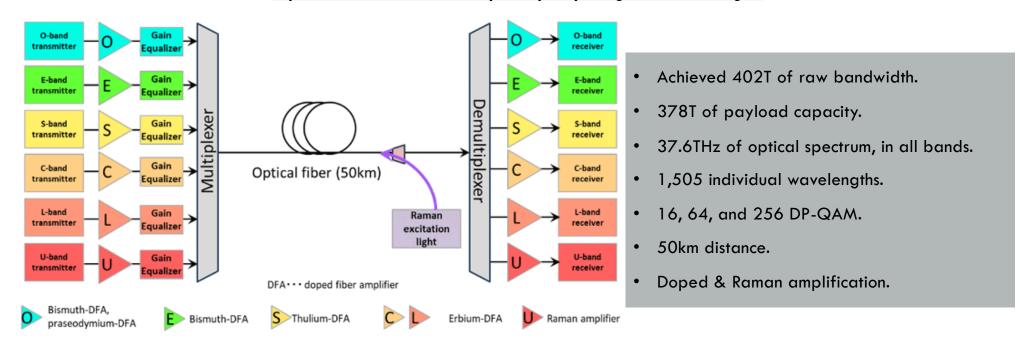
- Latest SDM cables are promoted as being "open".
- When is a cable RFS?
- How do you manage spectrum?
- Who operates the cable system?
- How do you perform testing quickly?
- How do you provision quickly?
- Who do you call when things go wrong?



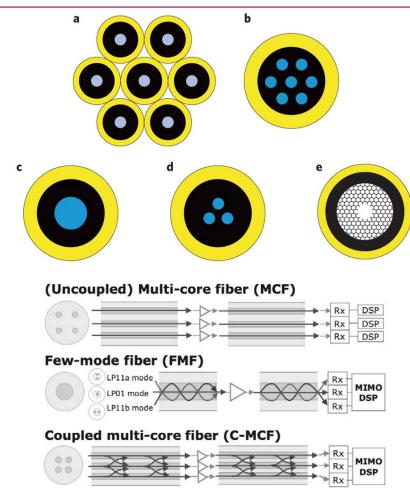
SDM Challenges

It is rather logistical... Cable Landing Station Vendor A Vendor B Transponder(s) Transponder(s) Transponder(s) ASE and/or Idlers Some or all transponders will be located in PoP/DC Power Management ROADM Controller Wet plant PoP or monitoring Data Center Backhaul To the Wet Plant "Glass through"

SDM & Optical Future


- 32 40 FP's per cable is currently underway.
- Limitations for the # of FP's is the amplifiers.
- Novel fibre technologies.
- C+L to increase spectrum (9.6THz 12.2THz).

SDM & Optical Future


NICT (Japan)

National Institute of Information & Communications Technology Experiment to increase fibre optic capacity using novel technologies.

SDM & Optical Future

Novel Fibres

- a) Standard SMF.
- b) MCF (uncoupled).
- c) FMF.
- d) C-MCF.
- e) HCF.
- Ultimately, we can't run away from physics.
- At some point, we need to lay more fibre.
- For 2024, an option for fibre-rich markets.
- New subsea builds will focus on a), for now.

Q&A

mark@transmissionco.net

