#### ASPA: RPKI-based AS\_PATH verification

Ben Maddison <u>benm@workonline.africa</u>

#### **Background: BGP route leaks**

" A route leak is the propagation of routing announcement(s) beyond their intended scope - RFC7908



#### Where's the harm?

Route leaks hurt *everyone*:

- Performance to the destination network is impacted by congestion or black holes
- The leaker's legitimate downstream networks are impacted by congestion upstream
- The leaker's connected networks (incl. IXPs) experience congestion because of the additional traffic being attracted
- The leaker incurs additional charges for transit utilisation

#### Where's the harm? (cont.)

- The origin's legitimate transit providers loose out on billable traffic
- Security and policy controls are bypassed
- NOCs everywhere try to diagnose problems that they don't have enough data to understand

**Every AS that propagates the leak increases the blast radius** 

#### What does the solution look like?

Data describing the "intended propagation scope" of a BGP path that is:

Formulated in terms of data visible in BGP
Useful regardless of proximity to a leak
Strongly attributable and non-repudiate-able
Universally accessible

### What does the solution look like? (cont.)

Good news!

If we can describe a *data structure* and *authorisation model* that fulfills #1 and #2, then the existing RPKI gives us #3 and #4 for free

:-)

## Who gets to decide on "intended scope"?

- Prefix owner?
- Downstream AS?
- Upstream AS?
- Routing police?

# Who gets to decide on "intended scope"? (cont.)

- Intuitively, a route has been leaked when no-one is paying the transit AS.
- Formalised in the "valley-free" model

# Who gets to decide on "intended scope"? (cont..)

An observed AS\_PATH is in agreement with intended routing policy when for each transit AS, either:

- the transit AS is authorised by the *sending* AS to announce the path upstream to non-customers; or
- the transit AS is authorised by the *receiving* AS to announce to it all the paths received from non-customers

#### **ASPA RPKI signed object**

- Authorisation by a *Customer AS (CAS)* of a *Set of Provider ASes (SPAS)*
- Based on <u>RFC6488</u> object template
- CAS holder signs
- RP validates, aggregates, and sends to BGP speaker via RTR protocol

#### **Object** eContent

#### High level structure:

```
ASProviderAttestation ::= SEQUENCE {
version [0] INTEGER DEFAULT 0,
customerASID ASID,
providers ProviderASSet }
```

```
ProviderASSet ::= SEQUENCE (SIZE(1..MAX)) OF ASID
```

```
ASID ::= INTEGER (0..4294967295)
```

### **Object** eContent - version

Familiar version construct. Nothing to see here.

version

[0] INTEGER DEFAULT 0,

### **Object** eContent - customerASID

AS number of the network providing and signing the authorisation.

Encoded as 32-bit integer.

customerASID ASID,

#### **Object** eContent - ProviderASSet

- Non-empty set of authorised provider ASes
- No distinction between up/downstream authorisation
- ASØ used to signal "transit-free". *Subject to change*
- no longer AF-specific

```
ProviderASSet ::= SEQUENCE (SIZE(1..MAX)) OF ASID
```

```
ASID ::= INTEGER (0..4294967295)
```

#### **ASPA** object processing

- ASPA objects are produced by RPKI CAs <u>draft-ietf-sidrops-aspa-profile</u>
- RPKI-RTR is (usually) how the data gets to the router <u>draft-ietf-sidrops-8210bis</u>
- ASPA verification algorithm operates on the data contained in the RTR payload (aka **VAP**).

draft-ietf-sidrops-aspa-verification

#### **BGP Route Processing**

Each BGP path gets an AS\_PATH verification state:

- Valid: all transit ASes appearing in the AS\_PATH were verified by ASPA data
- Invalid: at least one transit AS in the AS\_PATH is acting in contravention of its neighbors' ASPA authorisations
- **Unknown**: insufficient ASPA data exists to arrive at either Valid or Invalid

#### **BGP Route Processing (cont.)**

draft-ietf-sidrops-aspa-verification defines two algorithms:

#### 1. Algorithm for Upstream Paths

For paths received from non-transits (customers, peers, etc). The entire AS\_PATH is expected to contain only *customer-to-provider* adjacencies

#### **BGP Route Processing (cont..)**

draft-ietf-sidrops-aspa-verification defines two algorithms:

## 2. Algorithm for Downstream PathsFor paths received from transits.The AS\_PATH is expected to contain:

- An **up-ramp** of *customer-to-provider* adjacencies
- A **down-ramp** of *provider-to-customer* adjacencies

#### **BGP Route Processing (cont...)**

Up-ramp / down-ramp visualisation



#### **Alternatives?**

- IRR data does not contain the necessary policy information (no transit-via in aut-num)
- <u>Peerlock</u> has similar semantics, however:
  - No crypto (in general)
  - Highly manual
  - Requires bug-free AS\_PATH regex ;-)

• BGPsec solves a different problem - truthfulness of AS\_PATH, not verification of routing policy

#### Benefits

Minimal information disclosure:

- no public assertions about who your peers or customers are
- compatible with non-disclosure obligations
- low change velocity for most operators

#### **Benefits (cont.)**

Incrementally deployable:

- Far-end verification: leaks are detectable several AS hops away
- A small number of published ASPA objects can make a large number of leaks detectable
- A small number of operators dropping ASPA "Invalid" paths can protect a significant part of the Internet

**Benefits (cont.)** 

Well defined semantics:

- Orthogonal to other RPKI use cases: semantics of other objects don't change
- Compliments ROV, BGPsec, etc.
- Sensible policy granularity: policy is described at the AS level, no sessions or prefixes[\*]

[\*]: See OTC Attribute <u>RFC9234</u> for prefix-granularity detection

#### **Current Status - IETF**

- <u>draft-ietf-sidrops-aspa-profile</u> and <u>draft-ietf-sidrops-aspa-</u> <u>verification</u> currently in WGLC.
  - Mostly complete and stable
  - Discussion ongoing about how "transit-free" should be represented
- <u>draft-ietf-sidrops-8210bis</u> was awaiting RFC publication needs a revision to remove per-AFI data structure

#### **Please review!**

#### **Current Status - Implementations**

- CA implementations Krill, RIPE NCC (pilot)
- RP implementations rpki-client, Routinator, RPSTIR2, StayRTR
- Tooling and testing rpkimancer, various others
- BGP speaker implementations openbgpd, NIST BGP-SRx

Still missing commercial NOS vendors

#### **Operator involvement**

Operators should be planning for ASPA now:

- Consider whether the verification algorithm is compatible with your current routing policy?
- Start talking to your peers, customers and transits about deployment
- Ask your router vendors about their roadmap

