Exercise peering definitions

The

Peering Simulation Game

©2013 DrPeering International
Licensed material – sales@DrPeering.net
http://DrPeering.net
Meet the Presenter

• Started working on Internet (NSFNET) in 1988
• 1998-2008 Co-Founder & Chief Technical Liaison, Equinix Inc. (NSDQ: EQIX)
• 2008-Present - DrPeering, Executive Director
 • Two-day On-Site Peering Workshops (EU/Africa)
• 2013 International Internet Exchange (IIX) CSO
White Paper Process

- Peering=under-documented Internet Operations Topic
- Interconnection Strategies for ISPs
 - “When does peering make sense?”
 - Lunches, document answers, create model, review, stepwise refinement
- Result: White Paper that reflects the community mindset
- 12 white papers --> Book

Freely available on http://DrPeering.net
Agenda

1. Introduce Internet Transit
2. Introduce Internet Peering
3. Peering Simulation Game
1) Internet Transit:
Connecting to the Edge of the Internet
Internet Transit Service

- Announce Reachability
- Metered Service
- Simple
- “Internet → This Way”
Internet Transit Pricing Model

• Typically metered
 – Priced In $/Mbps (Mega-bit-per-second)

• Volume (Mbps) measured at 95th percentile

• Definition: The 95th Percentile Measurement Method (also called 95/5) uses a single measurement (the 95th percentile 5 minute sample for the month) to determine the transit service volume for monthly transit fee calculation.
95th Percentile Billing Calculation

- 5 minute samples
- Month of deltas
- 95th percentile
- Max(in,out)
- Origin of 95th?

Internet Transit Billing Calculation (95th Percentile Measurement)

Metered Internet Transit Service

Upstream (Transit) Provider

5 minute samples

\[t_0 \]
\[: \]
\[t_n \]

End Of Month Sort

95th Percentile sample (Mbps)

\[* \text{ Internet Transit Price ($/Mbps)} \]

\[= \text{ Monthly Cost of Internet Transit} \]
Internet Price Declines (U.S.)

- “Can’t go lower”
- “No competition”
- Pricing varies widely
- Trend unmistakable

<table>
<thead>
<tr>
<th>Year</th>
<th>Price per Mbps</th>
<th>% Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>$1.57</td>
<td>33%</td>
</tr>
<tr>
<td>2014</td>
<td>$0.94</td>
<td>40%</td>
</tr>
<tr>
<td>2015</td>
<td>$0.63</td>
<td>33%</td>
</tr>
</tbody>
</table>
7 Observations About Internet Transit

1. Simple Service
2. Metered Service
3. Transit Commits and Discounts
4. Contract Terms
5. Is a Commodity
6. Customer-Supplier Relationship
7. May have SLAs (joke)
2) Internet Peering:
Connecting to the Core of the Internet
What is Internet Peering?

- Definition: Internet Peering is the business relationship whereby two companies reciprocally provide access to each others’ customers.
Internet Peering

3 Key Points

1. Peering is not a transitive relationship
2. Peering is not a perfect substitute
3. Peering is typically settlement free
3) Peering Simulation Game
Exercise the Peering Definitions
Apply the definitions

• Strategy Game
• Use the terminology correctly
• Negotiate Peering
• Successful in dozens of fora
• Engaging
• Fun!
The Game Board

ISPs (A,B,C,D)
IXPs (E,W,N,S)

Squares=Traffic
Traffic=Revenue ($2000/square/month)

Pay Transit Fees ($1000/others’ squares/month)
The Scorecard

Notes:
- Can only move adjacent or diagonally
- Hint: Calculate cost of NOT peering vs. Cost of peering
- At end of game we assume all roll a 3 for remaining rolls
- Winner is the ISP will the largest bank account at the end

<table>
<thead>
<tr>
<th>ROUND</th>
<th>PLAYER</th>
<th>Roll</th>
<th># Squares Owned</th>
<th>Revenue (Squares • $2000)</th>
<th>Transit Cost ($1000)</th>
<th>Peering Costs</th>
<th>Net</th>
<th>Running Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan A</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>Jan B</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>Jan C</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>Jan D</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$23,000</td>
<td></td>
</tr>
<tr>
<td>Feb A</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$22,000</td>
<td></td>
</tr>
<tr>
<td>Feb B</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$22,000</td>
<td></td>
</tr>
<tr>
<td>Feb C</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$22,000</td>
<td></td>
</tr>
<tr>
<td>Feb D</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$22,000</td>
<td></td>
</tr>
<tr>
<td>Mar A</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$21,000</td>
<td></td>
</tr>
<tr>
<td>Mar B</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$21,000</td>
<td></td>
</tr>
<tr>
<td>Mar C</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$21,000</td>
<td></td>
</tr>
<tr>
<td>Mar D</td>
<td>#2</td>
<td>1</td>
<td>$2,000</td>
<td>($3,000)</td>
<td>$0</td>
<td>($1,000)</td>
<td>$21,000</td>
<td></td>
</tr>
</tbody>
</table>
3 Rules

1. **Goal:** Maximize bank holdings. Make money by acquiring customers and reduce transit costs by peering.

2. **Play:** Roll the dice and expand your network by selecting that many adjacent “squares” of customers.
 - Gain transit revenue of $2000 for each customer square you own.
 - Pay transit fees of $1000 for each square of traffic that **other** ISPs own.

3. If at Exchange Point, two ISPs can negotiate peering:
 - $2000 recurring cost and loss of 2 turns, ISPs negotiate who covers the costs of peering.
Transit Provider X

A rolls 5,
Wants to peer w/B – moves to IXN
Receives revenue on 6 squares (6*$2000)
Pays Transit on others squares (3*$1000)
$12,000 - $3,000 = $9,000

Transit Provider Y
Transit Provider X

A A A A A
A

IXN

B B B B
IXE

Transit Provider Y

X X
IXW

Y Y
IXS

A rolls 5,
Pays Transit on others squares (3*$1000)
Receives revenue on 6 squares (6*$2000)
$12,000 - $3,000 = $9,000

B rolls 3,
Going to IXE
Receives revenue on 4 squares (4*$2000)
Pays Transit on others squares (8*$1000)
$8,000 - $8,000 = $0
Transit Provider X

A A A A A IXN A
A
A
A
X
IXW
YC
C
C
C
C
C
C
D

Transit Provider Y

IXE
IXF
Y
B
B
B
B
B
B
B

C rolls 6,
Can get to IXW, likes IXS
Receives revenue on 7 squares (7*$2000)
Pays Transit on others squares (11*$1000)
$14,000 - $11,000 = $3,000
D rolls 1,
Late entrant heading to IXE
Receives revenue on 2 squares (2*\$2000)
Pays Transit on others squares (17*\$1000)
\$4,000 - \$17,000 = -\$13,000
Scoreboard after Round 1

- ISP A: $9,000
- ISP B: $0
- ISPC: $3,000
- ISPD: -$13,000
Transit Provider X

A rolls 3,
Attaches to IXW

Receives revenue on 9 squares (9*$2000)
Pays Transit on others squares (13*$1000)
$18,000 - $13,000 = $5,000

Wants to peer with C – split costs?
YES: -$1,000 + both lose a turn
Neither has to pay transit to each other!

Transit Provider Y
Transit Provider X

A Position
9 Revenue squares
1 lost turn
Peering w/C
reduced cost $8000/turn

B rolls 6,
Attaches to IXE*IXN
Receives revenue on 10 squares (10*$2000)
Pays Transit on others squares (21*$1000)
$20,000 - $21,000 = -$1,000

Wants to peer with A – split costs?
NO: You pissed me off,
Yes: if $0 & B lose both turns
Both walk away

Transit Provider Y
Let’s play!

WELCOME TO BILLAND

4 ISPs that have never played before

Open Board
$35,000 VC Funding
$25,000 VC Funding – HARD Economic Times

We want to hear your thought process and peering negotiations
Winner - prize
Play Game

Game Rules

- **Objective:** Reach the destination square. Points are awarded as follows:
 - 25 points for reaching the destination square.
 - 10 points for each square crossed.
- **Movement:** Roll a 1-6 dice for movement. You can only move horizontally or diagonally.
- **Special Squares:**
 - Red squares: Move to the next square.
 - Blue squares: Move to the previous square.
 - Yellow squares: Match the number rolled.
 - Green squares: Advance three points.
 - Pink squares: Reverse the movement.
 - Purple squares: Stay in place.

Game Setup

- **Grid:** 6x6 square grid.
- **Players:** Two players.
- **Tokens:** Two tokens for each player.

Gameplay

1. **Roll the Dice:** Each turn, roll the dice to determine movement.
2. **Move Tokens:** Move tokens based on the dice roll and special squares.
3. **Score Points:** Record points for squares crossed.
4. **Winning Condition:** Reach the destination square first.

Scoring

- **Points:** 25 points for the destination square, 10 points for each square crossed.

Conclusion

The game concludes when one player reaches the destination square. The player with the highest score wins.

Example Game

<table>
<thead>
<tr>
<th>Roll</th>
<th>Movement</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forward</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Diagonal</td>
<td>15</td>
</tr>
</tbody>
</table>

Example Score Sheet

<table>
<thead>
<tr>
<th>Turn</th>
<th>Player</th>
<th>Movement</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Final Score:

- Player A: 85 points
- Player B: 75 points