Protect your peering edge - review
TABLE OF CONTENTS

SECTION 1
Review on why protecting the peering edge?

SECTION 2
Options to protect the peering edge.

SECTION 3
Summary.
Protect your peering edge - review

Why?

- You will receive traffic not destined for you or your clients.
- To limit the risk of becoming an unintended transit provider.
Protect your peering edge - review

Option 1: “First steps”

• No valid 0/0.
• Partial advertisements from RRs.
• iACLs.
• Split transit and peering layers.
Advantages of this approach?

✓ Easy to implement.

✓ Covering the majority of cases.
Protect your peering edge - review

Disadvantages of this approach?

× Manual approach.

× Error prune.

× No multiservice edge approach.

× “Trickier” relationships.
Protect your peering edge - review

*: Option 2: QPPB (QoS Policy Propagation via BGP)

- Cisco, Huawei: QPPB.
- Juniper: SCU/DCU.
- Alcatel, Nokia: QPPB.
Protect your peering edge - review

What is QPPB?

• QPPB: QoS Policy Propagation via BGP.

• BGP advertisement classification.

• The BGP advertisement inherits the classification of the associated BGP session.

• Any ingress packet will get the same classification as the destination.
Protect your peering edge - review

What is QPPB? (2)
Protect your peering edge - review

How does QPPB work?

Step 1: Tag peer prefixes uniquely within BGP and FIB tables.

- Mark peer prefixes with community attribute (P) and tag (P).
- Mark transit prefixes with community attribute (P) and tag (P).
- Mark client prefixes with community attribute (C) and tag (C).

```
routing-policy qosgroup_map
if community matches-any P-comm
then
set qos-group 7
else
set qos-group 1
endif
end-policy
!
routing bgp <your ASN>
address-family ipv4 unicast
table-policy qosgroup_map
```
Protect your peering edge - review

How does QPPB work? (2)

Step 2: Tag external packets at peering locations based upon longest prefix matching within FIB.

- Received from peer/transit and destined to peer/transit: tag as (P).
- Received from peer/transit and destined to client: tag as (C).

```
int gi0/0/0
ipv4 bgp policy propagation input qos-group destination
```
Step 3: Packet classification via MQC.

How does QPPB work? (3)

class-map match-any EXT
match qos-group 7
end-class-map
!
policy-map qppb_set_dscp
class EXT
 police rate percent 1
 conform-action drop
!
class class-default
 set dscp af11
end-policy-map
!
int gi0/0/0
service-policy input qppb_set_dscp
Advantages of QPPB?

✓ Sustainable option.
✓ Multiservice functionality can be done.
✓ No need to do filtering on RRes.
Disadvantages of QPPB?

- Difficult to understand.
- Still prone to configuration errors ("human factor"):
 - Blackholing.
 - Missing enforcement.
- Only granular to a BGP level.
Protect your peering edge - review

Option 3: BGP EPE

- Based on a Segment Routing (SR) implementation.

- SR will bring you benefits such as the following:
 - Less protocols.
 - Programmability.
 - Scaling.
 - Better granular control.

- Tutorials on SR: http://www.segment-routing.net/tutorials/
Protect your peering edge - review

ريحית BGP EPE (Egress Peer Engineering)

• Problem statement (RFC7855): “A centralized controller should instruct ingress PE to use a specific egress PE.”

• “How To”: draft-ietf-spring-segment-routing-central-epe.
Protect your peering edge - review

ภากรณ์ (2)

- BGP Peering SIDs.
 - Locally assigned labels to identify eBGP peers.
Protect your peering edge - review

BGP EPE (3)

- BGP EPE enabled border routers.
- Border device compiling the BGP Peering SIDs.
Protect your peering edge - review

BGP EPE (4)

- BGP EPE ingress policy.
- Program path to BGP EPE edge router.
Protect your peering edge - review

BGP EPE (5)

- BGP EPE Controller.
 - PCE based.
Protect your peering edge - review

📍 BGP EPE (6)
- Example 1: Traffic from A to D.
Protect your peering edge - review

BGP EPE (7)

- Example 2: Traffic from D to F.
Protect your peering edge - review

Advantages of BGP EPE

- No longer solely dependent on the classification of BGP.
- Controller is responsible for classification.
- Flexibility to override general rules.
Protect your peering edge - review

Disadvantages of BGP EPE

- Does need a controller.
- Complexity is moved from network to a controller.
- SR needs to be in use by operator.
- Only limited efficiency (i.e. when labels can be imposed).
Protect your peering edge - review

Summary

• BGP EPE:
 • More suitable for typical traffic steering implementation.

• QPPB:
 • Currently the best option for protecting your peering edge.
Contact Us

We want to hear from you. Get in touch with us
www.is.co.za/contact-us/

PHONE
+27 11 575 1000

EMAIL
riaan.vos@is.co.za

WEBSITE
www.is.co.za