
AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

Paolo	Lucente	
pmacct	

Presenta:on	history	

§  1.1:	
–  MENOG	13	mee:ng,	Kuwait	City,	Sep	2013	

§  1.2:	
–  SEE	3	mee:ng,	Sofia,	Apr	2014	

§  1.3:	
–  AfPIF	2017	mee:ng,	Abidjan,	Aug	2017	

Agenda	

§  Introduc)on	
§  pmacct	architecture	&	benefits			
§  example,	data	aggrega:on:	traffic	matrices	
§  example,	logging	micro-flows	or	events	
§  tee:	briefly	on	horizontal	scalability	

AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

whoami	

Paolo	Lucente	
GitHub:	paololucente	
LinkedIn:	plucente	
	
	
	
Digging	data	out	of	networks	worldwide	for	fun	
and	profit	for	more	than	10	years	

libpcap

pmacct	is	open-source,	free,	GPL’ed	so[ware	

sFlow

BGP

maps

IGP

MySQL
PgSQL
SQLite

MongoDB
BerkeleyDB

flat-files

RabbitMQ
Kafka

memory
tables

sFlow

tee

NetFlow
IPFIX

NetFlow
IPFIX

h\p://www.pmacct.net/	

Streaming
Telemetry

BMP
GeoIP

pmacct:	a	few	simple	use-cases	

BMP

flat-files

tee

NetFlow
IPFIX

sFlow

Kafka

IPFIX libpcap

pmacct:	a	slightly	more	complex	use-case	

BGP

flat-files

tee

NetFlow
IPFIX

Kafka

 MySQL

aggregation method #1

aggregation method #2

nfacctd

The	use-case	for	message	brokers	

pmacct-to-elas:csearch	0.3.0	

Credits	to:	Pier	Carlo	Chiodi,	h\ps://github.com/pierky/pmacct-to-elas:csearch	

Use	cases	by	industry	

Key	pmacct	non-technical	facts	

§  10+	years	old	project	
§  Can’t	spell	the	name	a[er	the	second	drink	
§  Free,	open-source,	independent	
§  Under	ac:ve	development	
§  Innova:on	being	introduced	
§ Well	deployed	around,	also	in	large	SPs/IXPs	
§  Close	to	the	SP/IXP	community	needs	

Agenda	

§  Introduc:on	
§  pmacct	architecture	&	benefits			
§  example,	data	aggrega:on:	traffic	matrices	
§  example,	logging	micro-flows	or	events	
§  tee:	briefly	on	horizontal	scalability	

AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

Some	technical	facts	

§  Pluggable	architecture:	
•  Can	easily	add	support	for	new	data	sources	and	backends	

§  Correla:on	of	data	sources:	
•  Na:vely	supported	data	sources	(ie.	flow	telemetry,	
BGP,	BMP,	IGP,	Streaming	Telemetry)	

•  Enrich	with	external	data	sources	via	tags	and	labels	

§  Enable	analy:cs	against	each	data	source:	
•  Stream	real-:me	
•  Dump	at	regular	:me	intervals	(possible	state	
compression)	

Some	technical	facts	(cont.d)	

BGP thread

NetFlow thread

Abstraction
layer

Core Process

MySQL	plugin	

Print	plugin	
(to	flat-files)	

Observed
network	 Backends	

Plugins

Pipe	

Pipe	

Some	technical	facts	(cont.d)	

§  Build	mul:ple	views	out	of	the	very	same	
collected	network	traffic,	ie.:	
•  Unaggregated	to	flat-files	for	security	and	forensics;	or	to	
message	brokers	(RabbitMQ,	Kaia)	for	Big	Data	

•  Aggregated	as	[<ingress	router>,	<ingress	interface>,	<BGP	
next-hop>,	<peer	des:na:on	ASN>]	and	sent	to	a	SQL	DB	to	
build	an	internal	traffic	matrix	for	capacity	planning	purposes	

§  Pervasive	data-reduc:on	techniques,	ie.:	
•  Data	aggrega:on	
•  Filtering	
•  Sampling	

Touching	ground:	a	config	snippet	for	both	
aggregated	and	unaggregated	views	

nfacctd_ip: 10.0.0.1
nfacctd_port: 2100

!

plugins: print[forensics], mysql[int_traffic_matrix]

!

aggregate[forensics]: etype, src_host, dst_host, \

 peer_src_ip, peer_dst_ip, in_iface, out_iface, \

 timestamp_start, timestamp_end, src_port, \

 dst_port, proto, tos, src_mask, dst_mask, src_as, \

 dst_as, tcpflags, export_proto_seqno

!

aggregate[int_traffic_matrix]: in_iface, peer_src_ip, \

 peer_dst_ip, peer_dst_as

!
! <rest of config skipped>

	

Basic daemon
config

Instantiating
plugins

Instantiating
plugins

Defining plugin
aggregation

methods

Touching	ground:	data	aggrega:on	&	
custom-defined	primi:ves	

§  Config	file	snippet:	
 ! …
 aggregate[int_traffic_matrix]: peer_src_ip, \
 mplsTopLabelIPv4Address

 !
 aggregate_primitives: /path/to/primitives.lst

 ! …	

§  Custom	primi:ve	defini:on:	
 ! …

 name=mplsTopLabelIPv4Address field_type=47 len=4 semantics=ip

 ! …	

Node-to-node internal TM
(egress NetFlow)

mplsTopLabelIPv4Address
not supported natively, let’s

define it!

Primitive name,
will be used for

everything

NetFlow field type,
IPFIX Information Element NetFlow/IPFIX

field length

Data presentation: [u_int,
hex, ip, mac, str]

BGP	integra:on	

§  pmacct	introduced	a	Quagga-based	BGP	daemon:	
•  Implemented	as	a	parallel	thread	within	the	collector	
•  Doesn’t	send	UPDATEs	whatsoever	
•  Behaves	as	a	passive	BGP	neighbor	
•  Maintains	per-peer	BGP	RIBs	
•  Supports	32-bit	ASNs;	IPv4,	IPv6	and	VPN	families		
•  Supports	ADD-PATH:	dra[-ieq-idr-add-paths	

§  Why	BGP	at	the	collector?	
•  Telemetry	reports	on	forwarding-plane,	and	a	bit	more	
•  Extended	visibility	into	control-plane	informa:on	

BMP	integra:on	

§  pmacct	introduced	a	BMP	daemon	wri\en	from	
scratch:	
•  BMP	is:	BGP	Monitoring	Protocol	
•  Implemented	as	a	parallel	thread	within	the	collector	
•  All	goodies	already	described	for	the	BGP	daemon:	

§ Contribu:ng	to	IETF	dra[-ieq-grow-bmp-local-rib	

•  Visibility	in	Adj-RIB-In	
•  Visibility	in	Adj-RIB-Out:	

§ Contribu:ng	to	IETF	dra[-ieq-grow-bmp-adj-rib-out	

IGP	(IS-IS)	integra:on	

§  A	Quagga-based	IS-IS	daemon	was	introduced:	
•  Implemented	as	a	parallel	thread	within	the	collector	
•  IS-IS	neighborship	over	a	GRE	tunnel	
•  Currently	limited	to	single	neighborhip,	single	level,	
single	topology	

•  Useful	to	look	up	non	BGP-routed	networks	
§  It	will	get	eventually	replaced	(BGP-LS)	

	

Storing	data	persistently		
§  Data	need	to	be	aggregated	both	in	spa:al	and	
temporal	dimensions	before	being	wri\en	down:	
•  Op:mal	usage	of	system	resources	
•  Avoids	expensive	consolida:on	of	micro-flows			

§  Build	project-driven	data	set(s):	
•  No	shame	in	mul:ple	partly	overlapping	data-sets	
•  Op:mize	compu:ng	

Storing	data	persistently	(cont.d)		
§  “noSQL”	databases	(Big	Data	J):	
•  Able	to	handle	large	:me-series	data-sets	
•  Meaningful	subset	of	SQL	query	language	
•  Innova:ve	storage	and	indexing	engines	
•  Scalable:	clustering,	spa:al	and	temporal	par::oning	
•  UI-ready:	ie.	ELK	and	TICK	stacks	

§  Open-source	RDBMS:	
•  Able	to	handle	large	data-sets	
•  Flexible	and	standardized	SQL	query	language	
•  Solid	storage	and	indexing	engines	
•  Scalable:	clustering,	spa:al	and	temporal	par::oning	

Storing	data	persisently:	MongoDB	

§  Once	it	was	pmacct	opening	to	noSQL	databases:	
•  Mess	up	with	the	C	API	over	:me	
•  2017	reality	check:	lack	of	interest,	discon:nuing	

§  noSQL	landscape	difficult	to	move	through,	ie.	
fragmented	and	lacks	of	standardiza:on	

§ MongoDB	seemed	interes:ng	for:	
•  Na:ve	grouping	opera:on	(more	performing	and	less	
complex	than	map/reduce)	

•  Horizontal	scaling	concept	(sharding)	

Brokering	data	around:	
RabbitMQ,	Kaia	message	exchanges	

§  noSQL	landscape	difficult	to	move	through,	ie.	
fragmented	and	lacks	of	standardiza:on,	am	i	
repea:ng	myself?	J	

§  Data	can	be	picked	up	at	the	message	exchange	
in	the	preferred	programming/scrip:ng	language	

§  Data	can	be	then	easily	inserted	in	the	preferred	
backend,	ie.	not	na:vely	supported	by	pmacct		

Agenda	

§  Introduc:on	
§  pmacct	architecture	&	benefits			
§  example,	data	aggrega)on:	traffic	matrices	
§  example,	logging	micro-flows	or	events	
§  tee:	briefly	on	horizontal	scalability	

AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

Why	speaking	of	traffic	matrices?	

–  Are	traffic	matrices	useful	to	a	network	operator	
in	the	first	place?	Yes	…	
§  Capacity	planning	(build	capacity	where	needed)	
§  Traffic	Engineering	(steer	traffic	where	capacity	is	
available)	

§  Be\er	understand	traffic	pa\erns	(what	to	expect,	
without	a	crystal	ball)	

§  Support	peering	decisions	(traffic	insight,	traffic	
engineering	at	the	border,	support	what	if	scenarios)	

Review	of	traffic	matrices:	internal	

§  POP	to	POP,	AR	to	AR,	CR	to	CR	

CR

CR

CR

CR

PoP

AR

AR

AR

AR

AR

PoP

AR

Customers Customers

AS1 AS2 AS3 AS4 AS5

Server Farm 1 Server Farm 2

©	2010	Cisco	Systems,	Inc./Cariden	Technologies,	Inc.	

Review	of	traffic	matrices:	external	

§  Router	(AR	or	CR)	to	external	AS	or	external	AS	to	
external	AS	(for	IP	transit	providers)	

CR

CR

CR

CR

PoP

AR

AR

AR

AR

AR

PoP

AR

Customers Customers

AS1 AS2 AS3 AS4 AS5

Server Farm 1 Server Farm 2

©	2010	Cisco	Systems,	Inc./Cariden	Technologies,	Inc.	

Let’s	focus	on	an	external	traffic	matrix	to	
support	peering	decisions	

§  Analysis	of	exis:ng	peers	and	interconnects:	
•  Support	policy	and	rou:ng	changes	
•  Fine-grained	accoun:ng	of	traffic	volumes	and	ra:os	
•  Determine	backbone	costs	associated	to	peering	
•  Determine	revenue	leaks	

§  Planning	of	new	peers	and	interconnects:	
•  Who	to	peer	next	
•  Where	to	place	next	interconnect	
•  Modeling	and	forecas:ng	

Our	traffic	matrix	visualized	

P	 P	

P	

PE	
A	

PE	
D	

PE	
C	

PE	
B	

P3	

P1	 P2	

P4	

BZ	

A	=	{	src_as,	in_iface,	peer_src_ip,	peer_dst_ip,	as_path,	tstamp,	bytes	}	

{	CZ,	X	(->	CY),	PE	C,	PE	A,	AZ_AY,	<:me>,	<bytes>	}	

{	BX,	Y	(->	BY),	PE	B,	PE	C,	CY_CX,	<:me>,	<bytes>	}	

{	AX,	Z	(->	AZ),	PE	A,	PE	B,	BY_BZ,	<:me>,	<bytes>	}	

Ge|ng	BGP	to	the	collector	

§  Needed	for	technical	reasons:	
•  Flow	exporters	use	NetFlow	v5,	ie.	no	BGP	next-hop	
•  Flow	exporters	are	unaware	of	BGP	
•  Libpcap	is	used	to	collect	traffic	data	

§  Needed	for	topology	or	traffic	related	reasons:	
•  Transi:ng	traffic	to	3rd	par:es	
•  Dominated	by	outbound	traffic	

§  Let	the	collector	BGP	peer	with	all	PE	devices:	facing	
peers,	transit	and	customers.	

§  Determine	memory	footprint	(below	in	MB/peer,	using	
BGP	best-path	sessions)	

44.03	

22.73	

19.97	 18.59	 18.12	 17.89	 17.76	 17.57	 17.48	 17.39	

50	

0	

10	

20	

30	

40	

50	

60	

0	 200	 400	 600	 800	 1000	 1200	 1400	

MB/peer	>=	0.12.4	

MB/peer	<	0.12.4	

	Number	of	BGP	peers	

	M
B/
pe

er
	

	500K	IPv4	routes,	50K	IPv6	routes,	64-bit	executable	

	~	9GB	total	memory	@	500	peers	

Ge|ng	BGP	to	the	collector	(cont.d)	

§  Set	the	collector	as	iBGP	peer	at	the	PE	devices:		
•  Configure	it	as	a	RR	client	to	get	full	table	
•  Collector	acts	as	iBGP	peer	across	(sub-)ASes	

§  BGP	next-hop	has	to	represent	the	remote	edge	
of	the	network	model:	
•  Typical	scenario	for	MPLS	networks	
•  Can	be	followed	up	to	cover	specific	scenarios	like:	

§ BGP	confedera:ons	
§ default	gateway	defined	due	to	par:al	or	default-only	
rou:ng	tables		

Ge|ng	BGP	to	the	collector	(cont.d)	

Ge|ng	telemetry	to	the	collector	

–  Export	ingress-only	measurements	at	all	PE	
devices:	facing	peers,	transit	and	customers.	
§  Traffic	is	routed	to	des:na:on,	so	plenty	of	
informa:on	on	where	it’s	going	to	
•  True,	some	eBGP	mul:-path	scenarios	may	get	challenging	

§  It’s	crucial	instead	to	get	as	much	as	possible	about	
where	traffic	is	coming	from,	ie.:	
•  input	interface	at	ingress	router	
•  source	MAC	address	

–  Perform	data	reduc:on	at	the	PE	(ie.	sampling)	

Telemetry	data/BGP	correla:on	

Touching	ground:	a	config	snippet	for	
traffic	matrices	

plugins: mysql[int_tm], mysql[ext_tm]
!

aggregate[int_tm]: in_iface, peer_src_ip, \

 peer_dst_ip, peer_dst_as

!

aggregate[ext_tm]: src_as, in_iface, peer_src_ip, \

 peer_dst_ip, peer_dst_as, as_path, dst_as

!

sql_table[int_tm]: int_tm-%Y%m%d_%H%M

!

sql_table[ext_tm]: ext_tm-%Y%m%d_%H%M

sql_cache_entries[ext_tm]: 99991

!

sql_refresh_time: 300

sql_history: 5m

!

! <rest of config skipped>

	

Dynamic SQL table names,
ie.: XXX_tm-20130803_1400

Build time bins of 5 mins

Insert data every 5 mins

AS-to-AS external TM

Port-to-port internal TM

Touching	ground:	how	data	would	look	
like:	internal	traffic	matrix	example	(1/2)	

mysql> SHOW TABLES FROM pmacct;
+----------------------+

| Tables_in_pmacct |

+----------------------+

| … |

| int_tm-20130803_1400 |

| int_tm-20130803_1405 |

| int_tm-20130803_1410 |

| … |

| ext_tm-20130803_1400 |

| ext_tm-20130803_1405 |

| ext_tm-20130803_1410 |

| … |

+----------------------+

Set of internal traffic
matrices

Set of external traffic
matrices

NOTE: sub-aggregation is expensive: we could also have had our traffic matrices over multiple
temporal aggregations in parallel, ie. 5 mins (as above) but also hourly and daily.

Touching	ground:	how	data	would	look	
like:	internal	traffic	matrix	example	(2/2)	

mysql> SELECT * FROM int_tm-20130803_1400 LIMIT 10;
+----------+-------------+-------------+-------------+------------------+-------+
| iface_in | peer_ip_src | peer_ip_dst | peer_dst_as | stamp_inserted | bytes |
+----------+-------------+-------------+-------------+------------------+-------+
212	10.0.0.107	10.0.0.3	65000	03-08-2013 14:00	859
212	10.0.0.107	10.0.0.253	65001	03-08-2013 14:00	5358
212	10.0.0.107	10.0.0.234	65002	03-08-2013 14:00	6181
212	10.0.0.107	10.0.0.251	65003	03-08-2013 14:00	27002
205	10.0.0.107	10.0.0.233	65004	03-08-2013 14:00	1200
258	10.0.0.107	10.0.0.240	65005	03-08-2013 14:00	560
212	10.0.0.107	10.0.0.252	65006	03-08-2013 14:00	62682
212	10.0.0.107	10.0.0.234	65007	03-08-2013 14:00	3843
212	10.0.0.107	10.0.0.17	65008	03-08-2013 14:00	21074
205	10.0.0.107	10.0.0.254	65009	03-08-2013 14:00	2023
+----------+-----------+---------------+-----------------+--------------+-------+
10 rows in set (0.03 sec)

Getting ingress NetFlow
from 10.0.0.7 Time reference

Here is our matrix Here is our matrix Here is our matrix Here is our matrix

Amount of traffic sent in the
time window 14:00 – 14:05

Case-study:	peering	at	AS286	[year	2009]	

Nego:a:on	

Engineering	

Produc:on	

Op:miza:on	

§  Peering	as	a	cycle	
§  NetFlow	+	BGP	traffic	matrix	

steers	peering	op:miza:on:	
•  Iden:fy	new	and	“old”	peers	
•  Traffic	analysis:	backbone	

costs,	95th	percen:les,	ra:os	
•  Analysis	of	interconnec:on	

density	and	traffic	dispersion	
•  Forecas:ng	and	trending	
•  Ad-hoc	queries	from	Design	

&	Engineering	and	indeed	…	
the	IPT	Product	Manager	

§  250+	Gbps	rou:ng-domain	
§  100+	high-end	routers	around	

the	globe:	
•  Export	sampled	NetFlow	
•  Adver:se	full	rou:ng	table	
•  Mix	of	Juniper	and	Cisco	

§  Collector	environment:	
•  Runs	on	2	Solaris/SPARC	zones	
•  pmacct:		dual-core,	4GB	RAM	
•  MySQL:	quad-core,	24GB	RAM,	

500	GB	disk	
§  Data	reten:on:	6	months		

AS286	rou:ng	
domain	

pmacct	

MySQL	

Internal	users	

Case-study:	peering	at	AS286	[year	2009]	

§  AS286	backbone	routers	are	first	configured	from	
templates:	
•  NetFlow	+	BGP	collector	IP	address	defined	over	there	
•  Enabler	for	auto-discovery	of	new	devices	

§  Edge	interfaces	are	provisioned	following	service	
delivery	manuals:	
•  Relevant	manuals	and	TSDs	include	NetFlow	ac:va:on	
•  Periodic	checks	NetFlow	is	ac:ve	where	it	should	

§  Maps,	ie.	source	peer-AS	to	ingress	interfaces,	are	
re-built	periodically	

Case-study:	peering	at	AS286	[year	2009]	

Agenda	

§  Introduc:on	
§  pmacct	architecture	&	benefits			
§  example,	data	aggrega:on:	traffic	matrices	
§  example,	logging	micro-flows	or	events	
§  tee:	briefly	on	horizontal	scalability	

AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

pmacct,	logging	&	flat-files:	brief	history	
(1/2)	

§  Originally	pmacct	was	about	memory	tables	
and	RDBMS	(no	flat-files)	

§  It	was	also	about	data	aggrega:on	(no	logging	
micro-flows)	

§  Other	tools	were	doing	this	greatly	already	–	
be\er	invest	in	new	ideas	

§  In	2011	pmacct	opened	to	flat-files	(see	next	
slide)	

pmacct,	logging	&	flat-files:	brief	history	
(2/2)	

§  In	recent	years	the	landscape	changed	and	
NetFlow	and	IPFIX	protocols	were	being	
generalized	besides	flows	

§  No:ceably,	they	entered	in	the	Event	Logging	
space,	ie.:	
•  Cisco	NEL,	ie.	(CG)NAT	events	
•  Cisco	NSEL,	ie.	security	events	

§  This	was	great	:me	to	review	the	strategy	
around	flat-files	and	logging	(of	events	and,	as	
a	consequence,	of	micro-flows)	

Logging	use-cases		

§ Micro-flows:	
•  R&D,	lab	ac:vi:es	
•  Security,	DDoS	detec:on,	forensics	
•  Related	to	data	aggrega:on:	

§ Analysis,	temporary:	elaborate	aggrega:on	methods	
§ Back-up,	permanent:	keep	raw	data	in	case	useful	

§  Events:	
•  NAT	events:	compliancy	with	local	authori:es	
•  FW	events:	security	reports	

Logging	features	

§  Split	data	in	files	and	directories	basing	on	
:me	of	the	day	and	(some)	primi:ve	values,	
ie.:	
•  5	mins,	hourly,	daily	files	(fully	customizable)	
•  IP	address	of	telemetry	exporter	

§  Can	append	to	an	exis:ng	file:	ie.	hourly	files	
but	refreshed	every	5	mins	

§  Files	can	be	then	archived	right	away	via	
triggers,	print_trigger_exec)	

§  	Pointer	to	latest	file	in	:me-series		

Logging	data	formats	

§  Text	formats	supported:	tab-spaced,	CSV	and	
JSON	
•  CSV:	quickest	serializa:on,	not	self-descrip:ve	
•  JSON:	verbose,	(hence)	slower	to	serialize,	self-
descrip:ve	

§  Binary	format	supported:	Apache	Avro	
•  Space	efficient,	schema-based,	indirect	access	
•  GPB	being	avoided	
•  Maybe	revisit	Cap’n	Proto	in	future	

Touching	ground:	a	config	snippet	for	
logging	micro-flows	

plugins: print[forensics]
!

aggregate[forensics]: src_host, dst_host, \

 peer_src_ip, peer_dst_ip, in_iface, out_iface, \

 timestamp_start, timestamp_end, src_port, \

 dst_port, proto, tos, src_mask, dst_mask, src_as, \

 dst_as, tcpflags

!

print_output_file[forensics]: /path/to/forensics-%Y%m%d_%H%M.txt

print_output[forensics]: csv

print_refresh_time[forensics]: 300

print_history[forensics]: 5m

print_output_file_append[forensics]: true

!

print_latest_file[forensics]: /path/to/forensics-latest

! <rest of config skipped>

Micro-flow (de)aggregation

Dynamic file names, ie.:
forensics-20130803_1400

[formatted, csv,
json]

Insert data every 5 mins,
append to file if exists

Insert data every 5 mins,
append to file if exists

Pointer to latest file to
become optional and
explicitly configured

Insert data every 5 mins,
append to file if exists

Touching	ground:	how	data	would	look	
like:	logging	micro-flows	(1/2)	

shell> ls –la
…

-rw------- 1 pmacct pmacct <size> Aug 02 13:50 forensics-20130802-1345.txt

-rw------- 1 pmacct pmacct <size> Aug 02 13:55 forensics-20130802-1350.txt

-rw------- 1 pmacct pmacct <size> Aug 02 14:00 forensics-20130802-1355.txt

-rw------- 1 pmacct pmacct <size> Aug 02 14:05 forensics-20130802-1400.txt

lrwxrwxrwx 1 pmacct pmacct 10 Aug 02 14:05 forensics-latest -> /path/to/
forensics-20130802-1400.txt

…

Pointer to latest finalized file

Configurable ownership

Touching	ground:	how	data	would	look	
like:	logging	micro-flows	(2/2)	

shell> cat forensics-latest

SRC_AS,DST_AS,PEER_SRC_IP,PEER_DST_IP,IN_IFACE,OUT_IFACE,SRC_IP,DST_IP,
SRC_MASK,DST_MASK,SRC_PORT,DST_PORT,TCP_FLAGS,PROTOCOL,TOS,TIMESTAMP_ST
ART,TIMESTAMP_END,PACKETS,BYTES
65001,65002,10.0.0.1,10.0.0.100,101,8,192.168.158.133,192.168.126.141,2
4,24,61912,22,24,tcp,16,2013-08-04 17:40:12.167216,2013-08-04
17:41:36.140279,21,1407

[..]

Touching	ground:	a	config	snippet	for	
logging	NAT	events	

plugins: print[cgn]
!

aggregate[cgn]: src_host, post_nat_src_host, src_port, \

 post_nat_src_port, proto, nat_event, timestamp_start

!

print_output_file[cgn]: /path/to/cgn-%Y%m%d_%H%M.txt

print_output[cgn]: json

print_refresh_time[cgn]: 300

print_history[cgn]: 5m

print_cache_entries[cgn]: 9999991

print_output_file_append[cgn]: true

! <rest of config skipped>

	

Well-defined NAT event

Bigger cache size to
cope with increased
number of records

NOTE 2: a bigger cache is beneficial to limit scattering of writes to the backend. If the configured
cache is unable to contain all records, a purge of data to the backend is triggered and cache content is

flushed so to make room to new data.

NOTE 1: see config snippet for micro-flows (a few slides back) for additional comments on
configuration directives listed above.

Let’s increase readability J

Touching	ground:	how	data	would	look	
like:	logging	NAT	events	(1/2)	

shell> ls –la
…

-rw------- 1 pmacct pmacct <size> Aug 02 13:50 cgn-20130802-1345.txt

-rw------- 1 pmacct pmacct <size> Aug 02 13:55 cgn-20130802-1350.txt

-rw------- 1 pmacct pmacct <size> Aug 02 14:00 cgn-20130802-1355.txt

-rw------- 1 pmacct pmacct <size> Aug 02 14:05 cgn-20130802-1400.txt

lrwxrwxrwx 1 pmacct pmacct 10 Aug 02 14:05 cgn-latest -> /path/to/
cgn-20130802-1400.txt

…

Touching	ground:	how	data	would	look	
like:	logging	NAT	events	(2/2)	

shell> cat cgn-latest

{"timestamp_start": "2013-02-21 16:56:33.518000000", "ip_proto": "tcp",
"post_nat_ip_src": ”1.2.179.16", "ip_src": ”192.168.37.51", "port_src":
61020, "nat_event": 1, "post_nat_port_src": 31392}
[..]

A	single	(set	of)	collector(s)	for	both	
micro-flows	and	events	logging?	

§  Yes,	possible:	
•  All	NetFlow,	regardless,	pointed	to	the	same	place		
•  Makes	sense	on	small-medium	deployments	
•  On	larger	ones	poten:ally	pressuring	the	(same	set	
of)	collector(s)	with,	say,	an	ongoing	DDoS	and	a	
CGN	blade	reboo:ng	is	not	a	good	idea.	Go	for	
spli|ng.	

§  pmacct	able	to	tag	and	channelize	data	(ie.	
send	data	selec:vely	to	plugins)		basing	on	a	
number	of	clauses	

Touching	ground:	a	config	snippet	for	
both	micro-flows	and	event	logging	(1/2)	
plugins: print[forensics], print[cgn]
!
pre_tag_filter[forensics]: 10
aggregate[forensics]: <micro-flows aggregation method>
print_output_file[forensics]: /path/to/forensics-%Y%m%d_%H%M.txt
!
pre_tag_filter[cgn]: 20
aggregate[cgn]: <NAT events aggregation method>
print_output_file[cgn]: /path/to/cgn-%Y%m%d_%H%M.txt
print_cache_entries[cgn]: 9999991
!
print_output: csv
print_refresh_time: 300
print_output_file_append: true
!
pre_tag_map: /path/to/pretag.map
! <rest of config skipped>

	NOTE: This configuration merely merges the micro-flows and event logging configurations seen before.
Check them out (a few slides back) for additional comments on configuration directives listed above.

Enabler for channelizing
data to the correct plugin

instance: map to assign tags
to records

Allowing only flows through
(see next slide)

Allowing only events
through (see next slide)

Touching	ground:	a	config	snippet	for	
both	micro-flows	and	event	logging	(2/2)	
shell> cat pretag.map

set_tag=10 ip=0.0.0.0/0 sample_type=flow

set_tag=20 ip=0.0.0.0/0 sample_type=event

Tags are assigned in
pretag.map and recalled in the
configuration by pre_tag_filter

Tags are assigned in
pretag.map and recalled in the
configuration by pre_tag_filter

Apply to all NetFlow/
IPFIX exporters

Apply to all NetFlow/
IPFIX exporters

Apply heuristics to classify
records among flows and

events

Apply heuristics to classify
records among flows and

events

Agenda	

§  Introduc:on	
§  pmacct	architecture	&	benefits			
§  example,	data	aggrega:on:	traffic	matrices	
§  example,	logging	micro-flows	or	events	
§  tee:	briefly	on	horizontal	scalability	

AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

Briefly	on	scalability	
§  A	single	collector	might	not	fit	it	all:	
•  Memory:	can’t	store	all	BGP	full	rou:ng	tables	
•  CPU:	can’t	cope	with	the	pace	of	telemetry	export	

§  Divide-et-impera	approach	is	valid:	
•  Assign	PEs	(both	telemetry	and	BGP)	to	collectors	
•  If	na:vely	supported	DB:	

§ Assign	collectors	to	DB	nodes	
§ Cluster	the	DB	

•  If	not-na:vely	supported	DB:	
§ Assign	collectors	to	message	brokers	
§ Cluster	the	messaging	infrastructure	

Briefly	on	scalability	(cont.d)	
§  Intui:vely,	the	matrix	can	become	big:	
•  Can	be	reduced	by	excluding	en::es	negligible	to	
the	specific	scenario:	
§ Keep	smaller	routers	out	of	the	equa:on	
§  Filter	out	specific	(class	of)	customers	
§  Focus	on	downstream	if	CDN,	upstream	if	ISP	
§  Sample	or	put	thresholds	on	traffic	relevance	

Need	for	horizontal	scalability	in	a	
telemetry	collector	

§  High-frequency	sampling	(ie.	security)	
§  Cope	with	increasing	data	rates:	
•  10G	to	100G	but,	depending	on	the	applica:on,	
sampling	rates	might	stay	the	same	

•  Events	logging:	ie.	NetFlow	challenges	Syslog	in	the	
space	of	logging	Carrier	Grade	NAT	(CGN)	and	firewall	
events	

§  Scale	without	super-compu:ng	powers	

pmacct	&	horizontal	scaling	

§  Supports	a	‘tee’	plugin	
•  Receivers	can	be	added/changed/removed	on	the	fly	
•  Load-balenced	tee’ing	(hashed	or	round-robin)	
•  Selec:ve	tee’ing	

§ Mul:ple	pmacct	collectors	can	run	in	parallel	
•  Coupling	telemetry	and	rou:ng	data	from	same	PE	

Touching	ground:	a	config	snippet	for	
transparent	hashing	balancer	(1/2)	

plugins: tee[balancer]
!

plugin_buffer_size[blabla]: 100000

plugin_pipe_zmq[blabla]: true

!

tee_receivers[balancer]: /path/to/tee_receivers.lst

tee_transparent: true

Instantiating a tee plugin

File containing receivers
definitions

Transparent balancing
enabled. Disabling it acts as

a proxy

Queueing and buffering to
handle sustained packet

rates

Queueing and buffering to
handle sustained packet

rates

Touching	ground:	a	config	snippet	for	
transparent	hashing	balancer	(2/2)	

shell> cat tee_receivers.lst

id=1 \

ip=192.168.5.1:2100,192.168.5.2:2100,192.168.5.3:2100 \

balance-alg=hash-agent

Touching	ground:	a	config	snippet	for	
transparent	selec:ve	balancer	(1/2)	

plugins: tee[balancer]
!

plugin_buffer_size[blabla]: 100000

plugin_pipe_zmq[blabla]: true

!

tee_receivers[balancer]: /path/to/tee_receivers.lst

tee_transparent: true

!

pre_tag_map: /path/to/pretag.map

NOTE: see config snippet for transparent hashing balancer (a few slides back) for additional comments
on configuration directives listed above.

Enabler for selective
balancing: map to assign tags

to NetFlow/IPFIX exporters

Touching	ground:	a	config	snippet	for	
transparent	selec:ve	balancer	(2/2)	

shell> cat tee_receivers.lst

id=2 ip=192.168.4.1:2100 tag=100	
id=3 ip=192.168.4.2:2100 tag=200

shell> cat pretag.map

set_tag=100 ip=10.0.0.0/25

set_tag=200 ip=10.0.0.128/25

Tags are assigned in
pretag.map and recalled in

tee_receivers.lst

Tags are assigned in
pretag.map and recalled in

tee_receivers.lst

Further	informa:on	about	pmacct	

§  h\ps://github.com/pmacct/pmacct	
•  Official	GitHub	repository,	where	star	and	watch	us	J	

§  h\p://www.pmacct.net/lucente_pmacct_uknof14.pdf	
•  More	about	coupling	telemetry	and	BGP	

§  h\p://ripe61.ripe.net/presenta:ons/156-ripe61-bcp-
planning-and-te.pdf	
•  More	about	traffic	matrices,	capacity	planning	&	TE	

§  h\ps://github.com/pmacct/pmacct/wiki/	
•  Wiki:	docs,	implementa:on	notes,	ecosystem,	etc.	

Thanks!	Ques:ons?	

Paolo	Lucente	<paolo@pmacct.net>	
	

h\p://www.pmacct.net/	|	h\ps://github.com/pmacct/pmacct	

	
	AfPIF	2017,	Abidjan	–	Aug	2017		

Collec:ng	telemetry	data	with	
pmacct	

Backup	slides	

Collec:ng	telemetry	data	with	
pmacct	

AfPIF	2017,	Abidjan	–	Aug	2017		

Post-processing	RDBMS	and	repor:ng	(1/2)	
§  Traffic	delivered	to	a	BGP	peer,	per	loca:on:
mysql> SELECT peer_as_dst, peer_ip_dst, SUM(bytes), stamp_inserted

 FROM acct_bgp

 WHERE peer_as_dst = <peer | customer | IP transit> AND

 stamp_inserted = < today | last hour | last 5 mins >

 GROUP BY peer_as_dst, peer_ip_dst;	
§  Aggregate	AS	PATHs	to	the	second	hop:	
mysql> SELECT SUBSTRING_INDEX(as_path, ‘.’, 2) AS as_path, bytes

 FROM acct_bgp

 WHERE local_pref = < IP transit pref> AND

 stamp_inserted = < today | yesterday | last week >

 GROUP BY SUBSTRING_INDEX(as_path, ‘.’, 2)

 ORDER BY SUM(bytes);

§  Focus	peak	hour	(say,	8pm)	data:	
mysql> SELECT … FROM … WHERE stamp_inserted LIKE ‘2010-02-% 20:00:00’

 …

§  Traffic	breakdown,	ie.	top	N	grouping	BGP	peers	
of	the	same	kind	(ie.	peers,	customers,	transit):	

mysql> SELECT … FROM … WHERE …

 local_pref = <<peer | customer | IP transit> pref>

 …

§  Download	traffic	matrix	(or	a	subset	of	it)	to	3rd	
party	backbone	planning/traffic	engineering	
applica:on	(ie.	Cariden,	Wandl,	etc.):	

mysql> SELECT peer_ip_src, peer_ip_dst, bytes, stamp_inserted

 FROM acct_bgp

 WHERE [peer_ip_src = <location A> AND

 peer_ip_dst = <location Z> AND …]

 stamp_inserted = < today | last hour | last 5 mins >

 GROUP BY peer_ip_src, peer_ip_dst;	

	

Post-processing	RDBMS	and	repor:ng	(2/2)	

