Collecting telemetry data with *J3»
pmacct

Paolo Lucente

omacct

AfPIF 2017, Abidjan — Aug 2017

oi,ﬁéw

Presentation history

= 1.1:
- MENOG 13 meeting, Kuwait City, Sep 2013

= 1.2:
- SEE 3 meeting, Sofia, Apr 2014

= 1.3:
- AfPIF 2017 meeting, Abidjan, Aug 2017

Collecting telemetry data with *J3»
pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

AfPIF 2017, Abidjan — Aug 2017

whoami

Paolo Lucente
GitHub: paololucente

LinkedIn: plucente

Digging data out of networks worldwide for fun
and profit for more than 10 years

pmacct is open-source, free, GPL’ed software

Streaming MySQL
Telemetry PgSQL
-\ MongoDB
NetFlow
IPFIX ~—— .
0’\"5 0}

\
sFlow -/
RabbitMQ m

Kafka

memory
tables

http://www.pmacct.net/

BGP IGP
BMP
maps GeolP

pmacct: a few simple use-cases

NetFlow
IPFIX

sFlow

BMP

libpcap

ayoe

pmacct: a slightly more complex use-case

| Sssstonmatol#t
nfacctd
NetFlow : &
éﬂ IIIIIIIIIIIIII , » ‘ #2
IPFIX = Qe SIS s
= T,
i

The use-case for message brokers

‘iﬁgw — Qg kafka 5 Rabbit

PMACCT

") druid

IanuxDB U8 OPENTSDE

E ©O

kibana Superset

pmacct-to-elasticsearch 0.3.0

pmacct .
. in memory table
memory plugin

JSON/CSV

pmacct-to-

macct client .
P elasticsearch

trigger
script

pmacct output . .
print_trigger_exec

print plugin JSON/CSV file

Credits to: Pier Carlo Chiodi, https://github.com/pierky/pmacct-to-elasticsearch

Use cases by industry

ISPs, Hotspots, Data-center

Monitor customer quotas or fair-usage policy

Peering
I ' IP Carriers, CDNs

IXPs
Infer member relations Detect revenue leaks
Provide members traffic Customer retention
stats Peering
Mobile operators SDN
Verify roaming charges Query of traffic stats on

Inspect subscribers behaviour custom spatial and

temporal bounds

Key pmacct non-technical facts

10+ years old project

Can’t spell the name after the second drink
Free, open-source, independent

Under active development

Innovation being introduced

Well deployed around, also in large SPs/IXPs
Close to the SP/IXP community needs

Collecting telemetry data with *J3»
pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

AfPIF 2017, Abidjan — Aug 2017

Some technical facts

= Pluggable architecture:
e Can easily add support for new data sources and backends
" Correlation of data sources:

* Natively supported data sources (ie. flow telemetry,
BGP, BMP, IGP, Streaming Telemetry)

* Enrich with external data sources via tags and labels

" Enable analytics against each data source:

e Stream real-time

 Dump at regular time intervals (possible state
compression)

Some technical facts (cont.d)

BGP thread ﬁ MySQL plugin

é@straction
layer

NetFlow thread Print IO|U_gin
(to flat-files)

Core Proce

Observed
network

Backends

Some technical facts (cont.d)

" Build multiple views out of the very same

collected network traffic, ie.:

* Unaggregated to flat-files for security and forensics; or to
message brokers (RabbitMQ, Kafka) for Big Data

* Aggregated as [<ingress router>, <ingress interface>, <BGP
next-hop>, <peer destination ASN> | and sent to a SQL DB to
build an internal traffic matrix for capacity planning purposes

" Pervasive data-reduction techniques, ie.:
* Data aggregation
* Filtering
* Sampling

Touching ground: a config snippet for both
aggregated and unaggregated views

nfacctd_ip: 10.0.0.1 Basic daemon
nfacctd port: 2100 config

plugins: print[forensics], mysgl[int traffic matrix]
|

aggregate[forensics]: etype, src host, dst host, Instantiating
peer src ip, peer dst ip, in iface, out iface, \ plugins
timestamp start, timestamp end, src port, \

dst port, proto, tos, src mask, dst mask, src as, \

dst as, tcpflags, export proto seqno Defining plugin
! aggregation
ey \ methods

aggregate[int traffic matrix]: in iface, peer src ip,
peer dst 1p, peer dst as
!

! <rest of config skipped>

Touching ground: data aggregation &
custom-defined primitives

= Config file snippet:
o

aggregate[int traffic matrix]: peer src ip, \
mplsTopLabelIPv4Address Node-to-node internal TM

! (egress NetFlow)
aggregate primitives: /path/to/primitives.lst

mplsTopLabellPv4Address
« ey .« ey not supported natively, let's
= Custom primitive definition: et

name=mplsTopLabelIPv4Address field type=47 len=4 semantics=ip

Data presentation: [u_int,
hex, ip, mac, str]

Primitive name, NetFlow field type,
will be used for IPFIX Information Element NetFlow/IPFIX
everything field length

BGP integration

" pmacct introduced a Quagga-based BGP daemon:
* Implemented as a parallel thread within the collector
* Doesn’t send UPDATEs whatsoever
* Behaves as a passive BGP neighbor
* Maintains per-peer BGP RIBs
e Supports 32-bit ASNs; IPv4, IPv6 and VPN families
e Supports ADD-PATH: draft-ietf-idr-add-paths

= Why BGP at the collector?
* Telemetry reports on forwarding-plane, and a bit more
* Extended visibility into control-plane information

BMP integration

" pmacct introduced a BMP daemon written from
scratch:
e BMP is: BGP Monitoring Protocol
* Implemented as a parallel thread within the collector

* All goodies already described for the BGP daemon:
» Contributing to IETF draft-ietf-grow-bmp-local-rib

* Visibility in Adj-RIB-In
* Visibility in Adj-RIB-Out:
" Contributing to IETF draft-ietf-grow-bmp-adj-rib-out

IGP (IS-IS) integration

" A Quagga-based IS-IS daemon was introduced:
* Implemented as a parallel thread within the collector
* |S-IS neighborship over a GRE tunnel

* Currently limited to single neighborhip, single level,
single topology
e Useful to look up non BGP-routed networks

" |t will get eventually replaced (BGP-LS)

Storing data persistently

" Data need to be aggregated both in spatial and
temporal dimensions before being written down:

* Optimal usage of system resources
* Avoids expensive consolidation of micro-flows
* Build project-driven data set(s):
 No shame in multiple partly overlapping data-sets
* Optimize computing

Storing data persistently (cont.d)

= “noSQL” databases (Big Data ©):
* Able to handle large time-series data-sets
* Meaningful subset of SQL query language
* Innovative storage and indexing engines

* Scalable: clustering, spatial and temporal partitioning
e Ul-ready: ie. ELK and TICK stacks

= Open-source RDBMS:
* Able to handle large data-sets
* Flexible and standardized SQL query language
* Solid storage and indexing engines
* Scalable: clustering, spatial and temporal partitioning

Storing data persisently: MongoDB

" Once it was pmacct opening to noSQL databases:
* Mess up with the C APl over time
* 2017 reality check: lack of interest, discontinuing

" noSQL landscape difficult to move through, ie.
fragmented and lacks of standardization

" MongoDB seemed interesting for:

* Native grouping operation (more performing and less
complex than map/reduce)

* Horizontal scaling concept (sharding)

Brokering data around:
RabbitMQ, Kafka message exchanges

" noSQL landscape difficult to move through, ie.
fragmented and lacks of standardization, am i
repeating myself? ©

" Data can be picked up at the message exchange
in the preferred programming/scripting language

" Data can be then easily inserted in the preferred
backend, ie. not natively supported by pmacct

Collecting telemetry data with *J3»
pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

AfPIF 2017, Abidjan — Aug 2017

Why speaking of traffic matrices?

— Are traffic matrices useful to a network operator
in the first place? Yes ...

= Capacity planning (build capacity where needed)

= Traffic Engineering (steer traffic where capacity is
available)

= Better understand traffic patterns (what to expect,
without a crystal ball)

= Support peering decisions (traffic insight, traffic
engineering at the border, support what if scenarios)

Review of traffic matrices: internal

= POP to POP, ARto AR, CRto CR

© 2010 Cisco Systems, Inc./Cariden Technologies, Inc.

Review of traffic matrices: external

= Router (AR or CR) to external AS or external AS to
external AS (for IP transit providers)
Y W VY ¥
| J

= N > . ; - - ~ /’_/

CR

T

AR

e
g

N AR

, & >—=%—2 Customers
N N
—)
| N
| H 1 PoP
EI o B B

Server Farm 1 Server Farm 2

© 2010 Cisco Systems, Inc./Cariden Technologies, Inc.

Let’s focus on an external traffic matrix to
support peering decisions

" Analysis of existing peers and interconnects:
* Support policy and routing changes
* Fine-grained accounting of traffic volumes and ratios

 Determine backbone costs associated to peering
 Determine revenue leaks

" Planning of new peers and interconnects:
* Who to peer next

* Where to place next interconnect
* Modeling and forecasting

Our traffic matrix visualized

6'/* QI,
tos)
~
4D . : :
A = {src_as, in_iface, peer_src_ip, peer_dst_ip, as_path, tstamp, bytes }
)(J == {CZ, X (->CY), PEC, PE A, AZ_AY, <time>, <bytes> }

=== {BX, Y (->BY), PE B, PE C, CY_CX, <time>, <bytes> }
{AX, Z (-> AZ), PE A, PE B, BY_BZ, <time>, <bytes> }

Getting BGP to the collector

" Needed for technical reasons:
* Flow exporters use NetFlow v5, ie. no BGP next-hop
* Flow exporters are unaware of BGP
* Libpcap is used to collect traffic data

" Needed for topology or traffic related reasons:
* Transiting traffic to 3™ parties
 Dominated by outbound traffic

Getting BGP to the collector (cont.d)

= Let the collector BGP peer with all PE devices: facing
peers, transit and customers.

= Determine memory footprint (below in MB/peer, using
BGP best-path sessions)

60 500K IPv4 routes, 50K IPv6 routes, 64-bit executable
50
50 - i i i i i i il
44.03
_ 4o ~ 9GB total memory @ 500 peers
2
Q.
S~
g 30 & =&—MB/peer >=0.12.4
19.97
" 1859 18.12 17.89 | 17.76 17.57 17.48 17.39 ' MB/peer<0.12.4
—— —— - O
10
0

0 200 400 600 800 1000 1200 1400

Number of BGP peers

Getting BGP to the collector (cont.d)

" Set the collector as iBGP peer at the PE devices:
* Configure it as a RR client to get full table
* Collector acts as iBGP peer across (sub-)ASes

" BGP next-hop has to represent the remote edge
of the network model:

* Typical scenario for MPLS networks
* Can be followed up to cover specific scenarios like:

= BGP confederations

» default gateway defined due to partial or default-only
routing tables

Getting telemetry to the collector

— Export ingress-only measurements at all PE
devices: facing peers, transit and customers.
= Traffic is routed to destination, so plenty of

information on where it’s going to
* True, some eBGP multi-path scenarios may get challenging

" |[t’s crucial instead to get as much as possible about
where traffic is coming from, ie.:

* input interface at ingress router
* source MAC address

— Perform data reduction at the PE (ie. sampling)

Telemetry data/BGP correlation

peer_src_ip
peer_dst _ ip

peer
dst as

o Edge routers send full BGP tables to pmacct
e Traffic flows

o NetFlow records are sent to pmacct
o pmacct looks up BGP information: NF src addr == BGP src addr

Touching ground: a config snippet for
traffic matrices

pluglns mysqgl [int tm], mysqgl[ext tm] POﬂtOpOﬂHﬂeﬂm|TM

aggregate[int tm]: 1n iface, peer src ip,

'peer—dSt—lp’ peer_dst_as AS-to-AS external TM

aggregate[ext tm]: src as, in iface, peer src 1p,
peer dst 1p, peer dst as, as path, dst as
|

sql tablel[int tm]: int tm-3Y3m%d
| Dynamic SQL table names,

le.: XXX_tm-20130803_1400

sgl tablelext tm]: ext tm-%Y%m%d

sqgl cache entries[ext tm]: 99991
|

sql refresh time: Insert data every 5 mins
sql history: 5m ._ .)
| Build time bins of 5 mins

! <rest of config skipped>

Touching ground: how data would look
like: internal traffic matrix example (1/2)

mysgl> SHOW TABLES FROM pmacct;

| Set of internal traffic
| matrices

int_tm-20130803_1410 | Set of external traffic

..

| int tm-20130803 1400

|

I

| .. | matrices
I

|

I

|

int tm-20130803 1405

ext tm-20130803 1400 |
ext tm-20130803 1405
ext tm-20130803 1410 |

NOTE: sub-aggregation is expensive: we could also have had our traffic matrices over multiple

temporal aggregations in parallel, ie. 5 mins (as above) but also hourly and daily.

Touching ground: how data would look
like: internal traffic matrix example (2/2)

mysgl> SELECT * FROM int tm-20130803 1400 LIMIT 10;

to———————— fom - fom - Fom - Fom Fo————— +
| iface in | peer ip src | peer 1p dst | peer dst as | stamp inserted | bytes |
to— fom - Fom Fom Fom Fo————— +
212	10.0.0.107	10.0.0.3	65000	03-08-2013 14:00	859
212	10.0.0.107	10.0.0.253	65001	03-08-2013 14:00	5358
212	10.0.0.107	10.0.0.234	65002	03-08-2013 14:00	6181
212	10.0.0.107	10.0.0.251	65003	03-08-2013 14:00	27002
205	10.0.0.107	10.0.0.233	65004	03-08-2013 14:00	1200
258	10.0.0.107	10.0.0.240	65005	03-08-2013 14:00	560
212	10.0.0.107	10.0.0.252	65006	03-08-2013 14:00	62682
212	10.0.0.107	10.0.0.234	65007	03-08-2013 14:00	3843
212	10.0.0.107	10.0.0.17	65008	03-08-2013 14:00	21074
205	10.0.0.107	10.0.0.254	65009	03-08-2013 14:00	2023
Fom e TN Ryt W e +

10 rows

Here is our matrix

Getting ingress NetFlow
from 10.0.0.7 time window 14:00 - 14:05

Time reference Amount of traffic sent in the

Case-study: peering at AS286 [year 2009]

Peering as a cycle

NetFlow + BGP traffic matrix
steers peering optimization:

Optimization

Negotiation

Production

Identify new and “old” peers

Traffic analysis: backbone
costs, 95t percentiles, ratios

Analysis of interconnection
density and traffic dispersion

Forecasting and trending

Ad-hoc queries from Design
& Engineering and indeed ...
the IPT Product Manager

Case-study: peering at AS286 [year 2009]

AS286 routing = 250+ Gbps routing-domain

domain 7, = 100+ high-end routers around
860 the globe:

 Export sampled NetFlow

e Advertise full routing table

* Mix of Juniper and Cisco

= Collector environment:
 Runs on 2 Solaris/SPARC zones
* pmacct: dual-core, 4GB RAM
 MySQL: quad-core, 24GB RAM,

500 GB disk
Internal users .
= Data retention: 6 months

Case-study: peering at AS286 [year 2009]

= AS286 backbone routers are first configured from
templates:
* NetFlow + BGP collector IP address defined over there
* Enabler for auto-discovery of new devices

" Edge interfaces are provisioned following service
delivery manuals:

e Relevant manuals and TSDs include NetFlow activation
 Periodic checks NetFlow is active where it should

" Maps, ie. source peer-AS to ingress interfaces, are
re-built periodically

Collecting telemetry data with *J3»
pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events

tee: briefly on horizontal scalability

AfPIF 2017, Abidjan — Aug 2017

pmacct, logging & flat-files: brief history
(1/2)
= Originally pmacct was about memory tables
and RDBMS (no flat-files)

" |t was also about data aggregation (no logging
micro-flows)

= Other tools were doing this greatly already —
better invest in new ideas

" |In 2011 pmacct opened to flat-files (see next
slide)

pmacct, logging & flat-files: brief history
(2/2)

" |n recent years the landscape changed and
NetFlow and IPFIX protocols were being
generalized besides flows

= Noticeably, they entered in the Event Logging
space, ie.:
e Cisco NEL, ie. (CG)NAT events
* Cisco NSEL, ie. security events

® This was great time to review the strategy

around flat-files and logging (of events and, as
a consequence, of micro-flows)

Logging use-cases

= Micro-flows:
 R&D, lab activities
e Security, DDoS detection, forensics

* Related to data aggregation:
= Analysis, temporary: elaborate aggregation methods
= Back-up, permanent: keep raw data in case useful

= Events:
* NAT events: compliancy with local authorities
* FW events: security reports

Logging features

Split data in files and directories basing on
time of the day and (some) primitive values,
le.:

* 5 mins, hourly, daily files (fully customizable)
* |P address of telemetry exporter

Can append to an existing file: ie. hourly files
but refreshed every 5 mins

Files can be then archived right away via
triggers, print_trigger_exec)

Pointer to latest file in time-series

Logging data formats

" Text formats supported: tab-spaced, CSV and
JSON

e CSV: quickest serialization, not self-descriptive
* JSON: verbose, (hence) slower to serialize, self-
descriptive
" Binary format supported: Apache Avro

e Space efficient, schema-based, indirect access
* GPB being avoided
* Maybe revisit Cap’n Proto in future

Touching ground: a config snippet for
logging micro-flows

plugins: print[forensics] Micro-flow (de)aggregation
|

aggregate[forensics]: src host, dst host, \

peer src ip, peer dst ip, in iface, out iface, \

timestamp start, timestamp end, src port, \

dst port, proto, tos, src mask, dst mask, src as, \ Dynamic file names, ie.:

dst_as, tcpflags forensics-20130803_1400
|
print output file[forensics]: /path/to/forensics-%Y%m%d SH%M.txt
print output[forensics]: csv

[formatted, csv,

print refresh time[forensics]: 300 BOH]
print history[forensics]: O5m
print output file append[forensics]: true MSmidmaeVQVSrmn&

! append to file if exists

print latest file[forensics]: /path/to/forensics-latest

| <rest of config skipped> Pointer to latest file to

become optional and
explicitly configured

Touching ground: how data would look
like: logging micro-flows (1/2)

shell> 1s —-1la

1lrwXrwxrwx

forensics-20130802-1400.txt

1

pmacct
pmacct
pmacct
pmacct
pmacct

pmacct
pmacct
pmacct
pmacct
pmacct

<size>
<size>
<size>
<size>
10 Aug

Aug 02
Aug 02
Aug 02
Aug 02

13

13:

14
14

:50
55
:00
:05

forensics-20130802-1345.
forensics-20130802-1350.
forensics-20130802-1355.
forensics-20130802-1400.

txt
tTxt
txt
txt

02 14:05 forensics-latest -> /path/to/

Configurable ownership

Pointer to latest finalized file

Touching ground: how data would look
like: logging micro-flows (2/2)

shell> cat forensics-latest

SRC_AS,DST AS,PEER SRC IP,PEER DST IP,IN IFACE,OUT IFACE,SRC IP,DST IP,
SRC_MASK, DST_MASK, SRC_PORT, DST_ PORT, TCP FLAGS, PROTOCOL, TOS, TIMESTAMP ST
ART, TIMESTAMP END, PACKETS, BYTES

65001,65002,10.0.0.1,10.0.0.100,101,8,192.168.158.133,192.168.126.141,2
4,24,01912,22,24,tcp,16,2013-08-04 17:40:12.167216,2013-08-04
17:41:36.140279,21,1407

[]

Touching ground: a config snippet for
logging NAT events

plugins: print[cgn] Well-defined NAT event
!

aggregate[cgn]: src host, post nat src host, src port, \
post nat src port, proto, nat event, timestamp start

print output file[cgn]: /path/to/cgn-%Y%m%d SHIM.txt

print_outputfcgn]: json Let's increase readability © Bigger cache size to
print refresh time[cgn]: 300 cope with increased

print historylcgn]: 5m number of records
print cache entries[cgn]: 9999991

print output file append[cgn]: true
! <rest of config skipped>

NOTE 1: see config snippet for micro-flows (a few slides back) for additional comments on
configuration directives listed above.

NOTE 2: a bigger cache is beneficial to limit scattering of writes to the backend. If the configured
cache is unable to contain all records, a purge of data to the backend is triggered and cache content is
flushed so to make room to new data.

Touching ground: how data would look

shell> 1s —-1la

1lrwXrwxrwx

cgn-20130802-1400.txt

like: logging NAT events (1/2)

1

pmacct
pmacct
pmacct
pmacct

pmacct

pmacct
pmacct
pmacct
pmacct

pmacct

<size>
<size>
<size>
<size>
10 Aug

Aug 02
Aug 02
Aug 02
Aug 02

13:
13:
:00
14:

14

50
55

05

cgn-20130802-1345.
cgn-20130802-1350.
cgn-20130802-1355.
cgn-20130802-1400.

txt
txt
txt
txt

02 14:05 cgn-latest -> /path/to/

Touching ground: how data would look
like: logging NAT events (2/2)

shell> cat cgn-latest

{"timestamp start": "2013-02-21 16:56:33.518000000", "ip proto": "tcp",
"post nat ip src": ”1.2.179.16", "ip src": 7”192.168.37.51", "port src":
61020, "nat event": 1, "post nat port src": 31392}

[..]

A single (set of) collector(s) for both
micro-flows and events logging?

" Yes, possible:
* All NetFlow, regardless, pointed to the same place
* Makes sense on small-medium deployments

* On larger ones potentially pressuring the (same set
of) collector(s) with, say, an ongoing DDoS and a
CGN blade rebooting is not a good idea. Go for
splitting.

" pmacct able to tag and channelize data (ie.
send data selectively to plugins) basing on a
number of clauses

Touching ground: a config snippet for
both micro-flows and event logging (1/2)

plugins: print[forensics], print[cgn]
! Allowing only flows through

pre tag filter[forensics]: 10 (see next inde)
aggregate[forensics]: <micro-flows aggregation method>
print output file[forensics]: /path/to/forensics-%Y%m%d $HSM.txt

Allowing only events

pre_tag filterlcgn]: 20 through (see next slide)

aggregate[cgn]: <NAT events aggregation method>
print output file[cgn]: /path/to/cgn-%Y%m%d S$HSM.txt
print cache entries[cgn]: 9999991

|

print output: csv

print refresh time: 300 Enabler for channelizing
print output file append: true data to the correct p|ug|n

! instance: map to assign tags
pre tag map: /path/to/pretag.map to records

! <rest of config skipped>

NOTE: This configuration merely merges the micro-flows and event logging configurations seen before.

Check them out (a few slides back) for additional comments on configuration directives listed above.

Touching ground: a config snippet for
both micro-flows and event logging (2/2)

shell> cat pretag.map

set tag=10
set tag=20

ip=0.0.0.0/0
ip=0.0.0.0/0

sample type=flow

sample type=event

Apply heuristics to classify
Apply to all NetFlow/
IPFIX exporters

records among flows and
events

Tags are assigned in
pretag.map and recalled in the
configuration by pre_tag_filter

Collecting telemetry data with *J3»
pmacct

Agenda

Introduction

pmacct architecture & benefits

example, data aggregation: traffic matrices
example, logging micro-flows or events
tee: briefly on horizontal scalability

AfPIF 2017, Abidjan — Aug 2017

Briefly on scalability

= Asingle collector might not fit it all:
 Memory: can’t store all BGP full routing tables
 CPU: can’t cope with the pace of telemetry export

= Divide-et-impera approach is valid:
* Assign PEs (both telemetry and BGP) to collectors
* If natively supported DB:

= Assign collectors to DB nodes
= Cluster the DB
* If not-natively supported DB:

= Assign collectors to message brokers
» Cluster the messaging infrastructure

Briefly on scalability (cont.d)

" |ntuitively, the matrix can become big:

* Can be reduced by excluding entities negligible to
the specific scenario:
= Keep smaller routers out of the equation
= Filter out specific (class of) customers
" Focus on downstream if CDN, upstream if ISP
= Sample or put thresholds on traffic relevance

Need for horizontal scalability in a
telemetry collector

* High-frequency sampling (ie. security)
" Cope with increasing data rates:

* 10G to 100G but, depending on the application,
sampling rates might stay the same

* Events logging: ie. NetFlow challenges Syslog in the
space of logging Carrier Grade NAT (CGN) and firewall

events
" Scale without super-computing powers

pmacct & horizontal scaling

" Supports a ‘tee’ plugin
* Receivers can be added/changed/removed on the fly
* Load-balenced tee’ing (hashed or round-robin)
* Selective tee’ing

" Multiple pmacct collectors can run in parallel

* Coupling telemetry and routing data from same PE

Touching ground: a config snippet for
transparent hashing balancer (1/2)

plugins: tee[balancer] Instantiating a tee plugin
!

plugin buffer size([blabla]: 100000

. . Queueing and buffering to
1 : .
El) ugin_pipe_zmqlblablal: true handle sustained packet

rates

tee receivers[balancer]: /path/to/tee receivers.lst

tee transparent: true

Transparent balancing File containing receivers
enabled. Disabling it acts as definitions

Touching ground: a config snippet for
transparent hashing balancer (2/2)

shell> cat tee receivers.lst

id=1 \
ip=192.168.5.1:2100,192.168.5.2:2100,192.168.5.3:2100 \

balance—-alg=hash-agent

Touching ground: a config snippet for
transparent selective balancer (1/2)

plugins: tee[balancer]

!

plugin buffer size([blabla]: 100000
plugin pipe zmg[blablal]: true

!

tee receivers[balancer]: /path/to/tee receivers.lst
tee transparent: true

pre tag map: /path/to/pretag.map

Enabler for selective
balancing: map to assign tags
to NetFlow/IPFIX exporters

NOTE: see config snippet for transparent hashing balancer (a few slides back) for additional comments
on configuration directives listed above.

Touching ground: a config snippet for
transparent selective balancer (2/2)

shell> cat tee receivers.lst

1d=2 1p=192.168.4.1:2100 tag=100
1d=3 1p=192.168.4.2:2100 tag=200

Tags are assigned in
pretag.map and recalled in

shell> cat pretag.map tee receivers.Ist

set tag=100 ip=10.0.0.0/25
set tag=200 ip=10.0.0.128/25

Further information about pmacct

https://github.com/pmacct/pmacct

 Official GitHub repository, where star and watch us ©

http://www.pmacct.net/lucente pmacct uknofl4.pdf

 More about coupling telemetry and BGP
http://ripe6l.ripe.net/presentations/156-ripe61-bcp-

planning-and-te.pdf

* More about traffic matrices, capacity planning & TE
https://github.com/pmacct/pmacct/wiki/

* Wiki: docs, implementation notes, ecosystem, etc.

Collecting telemetry data with *J3»
pmacct

Thanks! Questions?

Paolo Lucente <paolo@pmacct.net>

http://www.pmacct.net/ | https://github.com/pmacct/pmacct

AfPIF 2017, Abidjan — Aug 2017

Collecting telemetry data with *J3»
pmacct

Backup slides

AfPIF 2017, Abidjan — Aug 2017

Post-processing RDBMS and reporting (1/2)

" Traffic delivered to a BGP peer, per location:

mysqgl> SELECT peer as dst, peer ip dst, SUM(bytes), stamp inserted

FROM acct bgp
WHERE peer as dst = <peer | customer | IP transit> AND

stamp inserted = < today | last hour | last 5 mins >

GROUP BY peer as dst, peer 1ip dst;

" Aggregate AS PATHs to the second hop:

mysgl> SELECT SUBSTRING INDEX (as path, ‘., 2) AS as path, bytes
FROM acct bgp
WHERE local pref = < IP transit pref> AND
stamp inserted = < today | yesterday | last week >
GROUP BY SUBSTRING INDEX (as path, ‘.’, 2)
ORDER BY SUM (bytes) ;

" Focus peak hour (say, 8pm) data:

mysgl> SELECT .. FROM .. WHERE stamp inserted LIKE °‘2010-02-% 20:00:00’

Post-processing RDBMS and reporting (2/2)

» Traffic breakdown, ie. top N grouping BGP peers
of the same kind (ie. peers, customers, transit):

mysql> SELECT .. FROM .. WHERE ..

local pref = <<peer | customer | IP transit> pref>

= Download traffic matrix (or a subset of it) to 3™
party backbone planning/traffic engineering
application (ie. Cariden, Wandl, etc.):

mysqgl> SELECT peer ip src, peer 1p dst, bytes, stamp inserted
FROM acct bgp
WHERE [peer 1p src = <location A> AND
peer 1p dst = <location Z> AND ..]
stamp inserted = < today | last hour | last 5 mins >

GROUP BY peer ip src, peer 1ip dst;

